Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
J Clin Endocrinol Metab ; 107(12): 3370-3377, 2022 11 25.
Article in English | MEDLINE | ID: covidwho-2021398

ABSTRACT

CONTEXT AND AIMS: Coronavirus disease 19 (COVID-19) trajectories show high interindividual variability, ranging from asymptomatic manifestations to fatal outcomes, the latter of which may be fueled by immunometabolic maladaptation of the host. Reliable identification of patients who are at risk of severe disease remains challenging. We hypothesized that serum concentrations of Dickkopf1 (DKK1) indicate disease outcomes in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-infected individuals. METHODS: We recruited hospitalized patients with PCR-confirmed SARS-CoV-2 infection and included 80 individuals for whom blood samples from 2 independent time points were available. DKK1 serum concentrations were measured by ELISA in paired samples. Clinical data were extracted from patient charts and correlated with DKK1 levels. Publicly available datasets were screened for changes in cellular DKK1 expression on SARS-CoV-2 infection. Plasma metabolites were profiled by nuclear magnetic resonance spectroscopy in an unbiased fashion and correlated with DKK1 data. Kaplan-Meier and Cox regression analysis were used to investigate the prognostic value of DKK1 levels in the context of COVID-19. RESULTS: We report that serum levels of DKK1 predict disease outcomes in patients with COVID-19. Circulating DKK1 concentrations are characterized by high interindividual variability and change as a function of time during SARS-CoV-2 infection, which is linked to platelet counts. We further find that the metabolic signature associated with SARS-CoV-2 infection resembles fasting metabolism and is mirrored by circulating DKK1 abundance. Patients with low DKK1 levels are twice as likely to die from COVID-19 than those with high levels, and DKK1 predicts mortality independent of markers of inflammation, renal function, and platelet numbers. CONCLUSION: Our study suggests a potential clinical use of circulating DKK1 as a predictor of disease outcomes in patients with COVID-19. These results require validation in additional cohorts.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Enzyme-Linked Immunosorbent Assay
2.
Horm Metab Res ; 54(8): 540-548, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-1788343

ABSTRACT

The use of standard procedures for the diagnosis of osteoporosis and assessment of fracture risk significantly decreased during the COVID-19 pandemic, while the incidence of fragility fractures was mostly unaltered. Both COVID-19 per se and its treatments are associated with a negative impact on bone health. Preclinical models show that mice infected with SARS-CoV2 even without symptoms display loss of trabecular bone mass two weeks post infection, due to increased numbers of osteoclasts. Osteoporosis medications do not aggravate the clinical course of COVID-19, while preclinical data suggests possible beneficial effects of some therapies. While vitamin D deficiency is clearly associated with a worse clinical course of COVID-19, evidence of improved patient outcome with vitamin D supplementation is lacking. Osteoporosis treatment should not be generally discontinued, and recommendations for substituting therapies are available. Osteoporosis therapies do not interfere with the efficacy or side-effect profiles of COVID-19 vaccines and should not be stopped or indefinitely delayed because of vaccination.


Subject(s)
COVID-19 , Fractures, Bone , Osteoporosis , Animals , COVID-19 Vaccines , Fractures, Bone/complications , Humans , Mice , Osteoporosis/drug therapy , Pandemics , RNA, Viral/therapeutic use , SARS-CoV-2 , Vitamin D/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL